Angstrom-Prescott Type Models for Predicting Solar Irradiation for Different Locations in Zimbabwe

Author:

Iradukunda Cedrick,Chiteka Kudzanayi

Abstract

Adequate assessment of solar radiation data is crucial for planning and designing solar energy systems. However, a major challenge facing solar energy technologies is the availability of solar radiation data at the specific area of interest. In this paper solar radiation and sunshine duration data from 29 stations in Zimbabwe were used to generate both monthly and annual Angstrom-Prescott (A-P) type coefficients, a and b, that are location based. The coefficients were developed using linear correlation between the clearness index and sunshine duration. The adaptation relationship between satellite and ground-measured irradiation had an R2 of 0.6738. The correlation between the clearness index and the sunshine duration in most of the stations was fairly high with the highest coefficient of determination, R2, of 0.9030. The A-Pregression coefficient, a, generated using the data from each station ranged between 0.2252 and 0.3976, whereas the regression coefficient, b, ranged between 0.3218 and 0.6265. The estimated and measured values of global solar radiation, He, and Hm, respectively from each station were compared using the mean absolute percentage error (MAPE), the root mean square error (RMSE), the mean absolute error (MAE) and the relative standard error (RSE). The MAE values for the models ranged from 0.5438 MJ/m2 to 2.2845 MJ/m2. The MAPE indicated a range between 2.5642 % and 10.334 %. The RSE ranged between 0.0346 % and 0.1537% while the RMSE for the models ranged from 0.7360 MJ/m2 to 2.9454 MJ/m2. The statistical indicators showed results that were within the recommended range for solar radiation predicting models from similar studies.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3