Affiliation:
1. Le Quy Don Technical University, Faculty of Mechanical Engineering, Vietnam
2. Le Quy Don Technical University, Faculty of Special Equipments, Vietnam
Abstract
Improving the surface quality after burnishing operation has been the subject of various published investigations. Unfortunately, the trade-off analysis between the energy consumption and surface characteristics of the internal burnishing has been not addressed due to the expensive cost and huge efforts required. The objective of the present work is to optimize burnishing factors, including the spindle speed, burnishing feed, depth of penetration, and the number of rollers for minimizing the energy consumed in the burnishing time, as well as surface roughness and maximizing Rockwell hardness. An adaptive neuro-based-fuzzy inference system (ANFIS) was used to develop burnishing objectives in terms of machining parameters. The optimization outcomes were selected using an evolution algorithm, specifically the non-dominated sorting particle swarm optimization (NSPSO). The results of the proposed ANFIS models are significant and can be employed to predict response values in industrial applications. The optimization technique comprising the ANFIS and NOPSO is a powerful approach to model burnishing performances and select optimal parameters as compared to the trial and error method as well as operator experience. Finally, the optimal solution can help to achieve the improvements in the energy consumed by 16.3 %, surface roughness by 24.3 %, and Rockwell hardness by 4.0 %, as compared to the common values.
Publisher
Faculty of Mechanical Engineering
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献