Residual, Corrosion & Tribological Behavior of HVOF Sprayed Sustainable Temperature-Dependent Carbon-Based Hybrid Composite Coating

Author:

Tyagi Ankit1,Murtaza Qasim2,Walia Ravinderjit Singh3

Affiliation:

1. Delhi Technological University, Department of Mechanical Engineering, India

2. SGT University, Department of Mechanical Engineering, India

3. Punjab Engineering College, Department of Production & Industrial engineering, India

Abstract

At present, cost-effective coatings that cause less pollution are in great demand; to decrease frictional losses, carbon-based hybrid composite coatings have been developed using a high-velocity oxy-fuel (HVOF) spray process. The microstructural, tribological, corrosion, and mechanical properties of these coatings have been evaluated using high-resolution X-ray diffraction (HRXRD), field emission scanning electron microscopy-Energy dispersive X-ray Spectroscopy (FESEM-EDS), Raman spectrum, Vickers micro-hardness tester, µ-360 cos(α) residual stress analyser, corrosion tester, and high temperature tribometer. The residual stress, corrosion and tribological behaviour at high temperatures were investigated using a pin-on-disc high-temperature tribometer. The tribological performance was evaluated using a high-temperature tribometer, and the experimental result shows that a coefficient of friction (COF) varies from 0.12 to 0.52, while wear results were in the range of 45 µm to 120 µm, as the test condition of temperature ranging from 50 °C to 350 °C, load from 60 N to 90 N and sliding velocity from 0.1 m/s to 0.4 m/s respectively. The experimental results of corrosion testing show that the mass loss decreases from 0.10 g to 0.04 g, when samples were dipped for 1 h; when the samples were dipped for 8 h, the mass loss of hybrid composite coating varied from 0.12 g to 0.045 g. The tribological test showed a 78.9 % increase in micro-hardness, a 78 % decrease in residual stress, and 60 % and 62.5 % decreases in mass loss due to corrosion at 1 h and 8 h, respectively, a 76.9 % decrease in COF and 62.5 % reduction in the wear at test condition of 350 ºC temperature, a sliding velocity of 0.4 m/s and 90 N load.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3