Analysis of the Dynamic Characteristics of a Gear-Rotor-Bearing System with External Excitation

Author:

Na Risu,Jia KaifaORCID,Miao Shujing,Zhang Weiguo,Zhang Quan

Abstract

The dynamic response of the rotor system in a ring die granulator is complex and difficult to solve when it operates under joint external, support and gear mesh forces. To solve this problem, a finite element method and extrusion theory was applied in this study to develop a dynamic coupling model for a hollow overhung rotor with external load excitation. A Newmark-β numerical integration method was used to solve for the dynamic response of the overhung rotor under multiple excitation forces. The results included time-domain response diagrams, frequency-domain response diagrams, phase diagrams, Poincaré section diagrams, and bifurcation diagrams. The model and the method were verified by testing a ring die granulator. On this basis, the dynamic response of the system is predicted according to the influence of different parameters. As the bearing support distance increased, the roller eccentricity decreased, the bearing clearance decreased, the response of the rotor system was significantly optimized, and the system tended to stabilize gradually. Therefore, this paper provides a theoretical basis and experimental verification for the optimization of a pelleting machine transmission structure.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic and Phase-Frequency Characteristics of Rotor Instability Induced by Steam Flow Excited Vibration in Seals;Strojniški vestnik - Journal of Mechanical Engineering;2024-08-28

2. The Double-Sided Upsetting of the End Thickenings on Rod Blanks;Strojniški vestnik - Journal of Mechanical Engineering;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3