Author:
Wang Teng,Tang Youfu,Wang Tao,Lei Na
Abstract
In this paper, a novel fault diagnosis method based on the fusion of squeeze and excitation-multiscale convolutional neural networks (SENet-MSCNN) and gate recurrent unit (GRU) is proposed to address the problem of low diagnosis rate caused by the fact that normal samples are much larger than fault samples in the vibration big data. The method takes the time-domain vibration signal as input and fuses the spatial features extracted by SENet-MSCNN. The temporal features extracted by GRU in order to bring them into the fully connected layer for identification so as to realize the intelligent diagnosis of rolling bearing adaptive feature extraction. Finally, the method is applied to the simulated signal and experimental data for testing and analysis. The results reveal that the model can reach 98.98 % and 76.44 % migration diagnostic accuracy in bearing and gearbox datasets. At the same time, it has strong noise immunity, adaptivity, and robustness, providing an effective way for intelligent diagnosis of rolling bearing vibration big data.
Publisher
Faculty of Mechanical Engineering
Subject
Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献