Effect of Vibrator Parameters and Physical Characteristics of Parts on Conveying Velocity

Author:

Vellingiri Vishwa Priya,Sadasivam Udhayakumar

Abstract

Automation is generally employed in the area of orienting, lifting, and moving parts for production in industries including automotive, electronic, food, and packaging. With the help of automation, it is possible to reduce the manufacturing time and labour required. The most adaptable tools for feeding small, designed pieces during part assembly are vibratory feeders. Industries have been effectively using vibratory feeders for more than 30 years, indicating that such technology is advanced. Although research in this area has not been lacking, a fundamental understanding of the interactions between a part’s physical characteristics and the various vibratory feeder operating parameters in relation to optimal performance, defined as conveying a part with maximum stability and maximum velocity, remains lacking in linear feeders. While several papers discuss the effect of vibratory parameters (excitation frequency and amplitude of vibration) and the coefficient of friction, the effect of characteristics of part (l/w ratio and mass) is neglected. In this work, the effect of these factors on the conveying velocity of prismatic parts made of aluminium and brass on a horizontal track without inclination was determined, and an attempt was made to develop a predictive model based on the above factors. Using Taguchi’s design of experiments (DOE), an L16 orthogonal array was designed. A response table for the signal-to-noise ratio has yielded optimal values for each parameter taken into consideration. ANOVA predicted frequency as the most influential parameter, followed by the coefficient of friction. The regression analysis yields an R2 value of 99.3 % for aluminium and 98.7 % for brass. The results of the regression model and random experiments show a high correlation of 91.66 %. This model is required to set the desired conveying velocity of parts so that continuous flow can be maintained in automated assembly or packaging industries.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3