Wear Behaviour of a Cu-Ni-Sn Hybrid Composite Reinforced with B4C prepared by Powder Metallurgy Technique

Author:

Allasi Haiter Lenin,Soosaimariyan Mary Vasanthi,Chidambaranathan Vettivel Singaravel

Abstract

Cu matrix composites benefit from the high electrical and thermal conductivities of Cu and the mechanical wear/erosion resistance of hard reinforcement. In this study, an attempt has been made to determine the effect of the addition of reinforcement B4C in Cu-Ni-Sn. The B4C is reinforced to form a hybrid Cu matrix composite with powder metallurgy technique. The hybrid composites are obtained by milling, blending, and compacting the powders to obtain a fine grain-sized particle without aggregation. The grain size and particle nature were characterized using scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques, respectively. The microstructure, density, hardness, and wear rate of the composites were studied. The pin-on-disc method is equipped to study the wear behaviour and coefficient of friction. The sintered density of the prepared Cu-15%Ni is 98.25 %, Cu-8%Sn is 98.20 %, Cu-15%Ni-8%Sn is 98.10 % and Cu-15%Ni-8%Sn-2%B4C is 95.26 % and lower specific wear rate has been recorded for Cu-15Ni-8Sn-2B4C 121×10-6 mm3/(Nm) and the addition of reinforcement B4C in Cu-Ni-Sn displays remarkable changes in wear rate and friction coefficient.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3