Implementation of K-Nearest Neighbors Algorithm for Predicting Heart Disease Using Python Flask

Author:

Anggoro Dimas Aryo,Aziz Nur Chudlori

Abstract

     Heart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine learning. Machine learning technology can be used to predict the potential patients of heart disease by implementing the K-Nearest Neighbors (KNN). The algorithm results in 65.93% for its accuracy, which is then improved to 82.41% due to the z-score normalization. It shows that z-score can noticeably improve the accuracy of the KNN algorithm. The system is developed based on a website that uses the Flask micro-framework so that development is more efficient. Flask is a micro-framework based on the Python programming language that does not contain many tools and libraries, so it is more portable and does not utilize a lot of resources.

Publisher

University of Baghdad College of Science

Subject

General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LOGISTIC REGRESSION TECHNIQUE FOR CARDIOVASCULAR DISEASE PREDICTION;FUDMA JOURNAL OF SCIENCES;2024-08-27

2. Response Time Prediction of M/M/1SRPT Queuing System Using Simulation Modeling and Artificial Intelligence;2023 Eighth International Conference on Informatics and Computing (ICIC);2023-12-08

3. Multi-Objective artificial bee colony optimized hybrid deep belief network and XGBoost algorithm for heart disease prediction;Frontiers in Digital Health;2023-11-16

4. Development of stock price prediction system using Flask framework and LSTM algorithm;Journal of Infrastructure, Policy and Development;2023-10-11

5. Improved Machine Learning Algorithm for Heart Disease Prediction Based on Hyperparameter Tuning;2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET);2023-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3