Author:
Anggoro Dimas Aryo,Aziz Nur Chudlori
Abstract
Heart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine learning. Machine learning technology can be used to predict the potential patients of heart disease by implementing the K-Nearest Neighbors (KNN). The algorithm results in 65.93% for its accuracy, which is then improved to 82.41% due to the z-score normalization. It shows that z-score can noticeably improve the accuracy of the KNN algorithm. The system is developed based on a website that uses the Flask micro-framework so that development is more efficient. Flask is a micro-framework based on the Python programming language that does not contain many tools and libraries, so it is more portable and does not utilize a lot of resources.
Publisher
University of Baghdad College of Science
Subject
General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献