Author:
Lateef Rana Abdulrahman,Abbas Ayad Rodhan
Abstract
Recently, Human Activity Recognition (HAR) has been a popular research field due to wide spread of sensor devices. Embedded sensors in smartwatch and smartphone enabled applications to use sensors in activity recognition with challenges for example, support of elderly’s daily life . In the aim of recognizing and analyzing human activity many approaches have been implemented in researches. Most articles published on human activity recognition used a multi -sensors based methods where a number of sensors were tied on different positions on a human body which are not suitable for many users. Currently, a smartphone and smart watch device combine different types of sensors which present a new area for analysis of human attitude. This paper presents a review on methodologies applied to solve problems related to human activity recognition that use the equipped sensors in smartphone and smartwatch with the employ of Machine Learning and the advance of deep learning approaches. The literature is summarized from four aspects: sensors types, applications, Machine Learning (ML) and Deep Learning (DL) models, results and challenges.
Publisher
University of Baghdad College of Science
Subject
General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献