Crawling and Mining the Dark Web: A Survey on Existing and New Approaches

Author:

Alshammery Mohammed Khalafallah,Aljuboori Abbas Fadhil

Abstract

    The last two decades have seen a marked increase in the illegal activities on the Dark Web. Prompt evolvement and use of sophisticated protocols make it difficult for security agencies to identify and investigate these activities by conventional methods. Moreover, tracing criminals and terrorists poses a great challenge keeping in mind that cybercrimes are no less serious than real life crimes. At the same time, computer security societies and law enforcement pay a great deal of attention on detecting and monitoring illegal sites on the Dark Web. Retrieval of relevant information is not an easy task because of vastness and ever-changing nature of the Dark Web; as a result, web crawlers play a vital role in achieving this task. Thereafter, data mining techniques are applied to extract useful patterns that would help security agencies to limit and get rid of cybercrimes. The aim of this paper is to present a survey for those researchers who are interested in this topic. We started by discussing the internet layers and the properties of the Deep Web, followed by explaining the technical characters of The Onion Routing (TOR) network, and finally describing the approaches of accessing, extracting and processing Dark Web data. Understanding the Dark Web, its properties and its threats is vital for internet servers; we do hope this paper be of help in that goal.

Publisher

University of Baghdad College of Science

Subject

General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perceptual Operating Systems for the Trade Associations of Cyber Criminals to Scrutinize Hazardous Content;International Journal of Cyber Warfare and Terrorism;2024-05-06

2. Unveiling the dark: Analyzing and Categorizing dark web activities using Bi-Directional LSTMs;2024 2nd International Conference on Networking and Communications (ICNWC);2024-04-02

3. A Comparative Analysis of Models for Dark Web Data Classification;Algorithms for Intelligent Systems;2024

4. Keyword-Based Information Retrieval Model for the Dark Web;2023 2nd International Conference on Futuristic Technologies (INCOFT);2023-11-24

5. Cognitive Systems for Dark Web Cyber Delinquent Association Malignant Data Crawling;Advances in Digital Crime, Forensics, and Cyber Terrorism;2023-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3