Extraction and Characterization of Chitosan from Crab Shells: Kinetic and Thermodynamic Studies of Arsenic and Copper Adsorption from Electroplating Wastewater

Author:

A. Sumaila,M. Ndamitso M.,A. Iyaka Y.,S. Abdulkareem, A.,O. Tijani J.,O. Idris M.

Abstract

Crab shells were used to produce chitosan via the three stages of deproteinization, demineralization and deacetylation using sodium hydroxide and hydrochloric acid under different treatment conditions of temperature and time. The produced chitosan was characterized using Fourier transform infrared spectroscopy (FTIRS), X-ray diffraction (XRD), high – resolution scanning electron microscopy (HRSEM), electron dispersion spectroscopy (EDS), dynamic light scattering (DLS), Brunauer Emmett Teller (BET) and Thermogravimetric analysis (TGA). The adsorption behavior of chitosan to remove arsenic (As) and copper (Cu) from electroplating wastewater was examined by batch adsorption process as a function of adsorbent dose, contact time and temperature. The FTIR, XRD, HRSEM and EDS analyses confirmed, respectively, the presence of –NH2 and –OH functional groups, with amorphous/crystalline phases, crystallinity index of 69.54%, needle-like morphology and Carbon (C), Oxygen (O) and Nitrogen N) in the produced chitosan. While DLS, BET and TGA showed, respectively, that the produced chitosan has an average particle size of 729nm, is moderately polydisperse, has12.67 m2/g surface area, mesoporous in nature, and with thermal stability of up to 1430C. The optimum adsorbent dose, contact time and temperature values to remove As and Cu by chitosan were 15mg, 45 minutes, 333K and25mg, 60 minutes, 349K,respectively. Under the employed conditions, chitosan though has a low surface area, displaying high adsorption capacity for both metal ions. The adsorption isotherm data were better fitted to the Jovanovic isotherm model while the kinetic data fitted best to the pseudo-second order model. The thermodynamic studies established that the adsorption was feasible but endothermic in nature. This study shows that chitosan adsorbents purify electroplating wastewater.

Publisher

University of Baghdad College of Science

Subject

General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3