Automatic Pectoral Muscles Detection and Removal in Mammogram Images

Author:

Fadhil Sarah Siham,Dawood Faten Abed Ali

Abstract

The main aim of the Computer-Aided Detection/Diagnosis system is to assist the radiologists in examining the digital mammograms. Digital mammogram is the most popular screening technique for early detection of breast cancer. One of the problems in breast mammogram analysis is the presence of pectoral muscles region with high intensity in the upper right or left side of most Media-Lateral Oblique views of mammogram images. Therefore, it is important to remove this pectoral muscle from the image for accurate diagnosis results. The proposed method consists of three main steps. In the first step, noise is reduced using Median filtering. In the second step, artifacts removal and breast region extraction are performed using Otsu method. Finally, the pectoral muscle is extracted and removed using the proposed Split Orientation Local Thresholding (SOLTH) algorithm. For this study, a total of 110 mammogram images from the Mini-Mias database (MIAS) were used to evaluate the proposed method’s performance. The experimental results of automatic pectoral muscle detection and removal were observed by radiologist and showed 90.9% accuracy of acceptable results.

Publisher

University of Baghdad College of Science

Subject

General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Fat-Removal-Based Preprocessing Pipeline for MLO View in Digital Mammograms;IEEE Access;2023

2. Noise Removal Filtering Methods for Mammogram Breast Images;Advances in Cognitive Science and Communications;2023

3. Removal of noise on mammogram breast images using filtering methods;Concurrency and Computation: Practice and Experience;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3