Green Synthesis of Copper Nanoparticles Using Tea Leaves Extract to Remove Ciprofloxacin (CIP) from Aqueous Media

Author:

Atiya Mohammed A.,Hassan Ahmed K.,Kadhim Fatimah Q.

Abstract

     In the present investigation, the synthesis of copper nanoparticles from green tea was attempted and investigated for its capacity to adsorb drugs (Ciprofloxacin). The copper nanoparticles (Cu-NPs) were characterized by different techniques of analysis such as scanning electron microscopy (SEM) images, atomic force microscope (AFM),  blumenauer-emmer-teller (BET), fourier transform infrared (FTIR) spectroscopy, and zeta potentials techniques. Cu-NPs lie in the mesoporous material category with a diameter in the range of 2-50 nm. The aqueous solution was investigated for the removal of ciprofloxacin (CIP) with green tea-synthesized Cu-NPs. The results showed that ciprofloxacin efficiency depends on initial pH (2.5-10), CIP (2mg/L-15mg / L) dose, temperature (20 ° C-50 ° C); time (0-180 min) and Cu-NP dose (0.1g /L-1g /L). Spherical nanoparticles with an average size of 47nm and a surface area of 1.6562m2/g were synthesized. The batch experiment showed that 92% of CIP 0.01 mg/L were removed at a maximum adsorbent dose of 0.75 g/L, pH 4, 180 min, and an initial 1:1 rate (w / w) of CIP: Cu-NPs. Kinetic adsorption models and ciprofloxacin removal mechanisms were examined. The kinetic analysis showed that adsorption is a physical adsorption system with activation energy of 0.8409 kJ.mol-1. A pseudo-first-order model is preferred for the kinetic removal after the physically diffusing process due to the low activation energy of 13.221kJ.mol-1. On the other hand, Langmuir, Freundlich, Temkin, and Dubinin isotherm models were also studied; the equilibrium data were best fitted with Langmuir and Dubinin isotherm models with maximum adsorption capacity of 5.5279, and 1.1069 mg/g, respectively. The thermodynamic values of ∆G0 were -0.0166, -0.0691, -4.1084, and -0.7014 kJ/mol at 20, 30, 40, and 50 ° C, respectively. The values of ΔH0 and ΔS0 were 18.8603 kJ/mol and 0.0652kJ/mol.k, respectively. These values showed spontaneous and endothermic sorption. The presence of the CIP concentration in aqueous media was identified by UV-analysis.

Publisher

University of Baghdad College of Science

Subject

General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3