Optimization of the Effects of Binary Hybrid Nanofluid Synthesis Parameters on the Thermal and Hydraulic Characteristics

Author:

Keklikcioglu OrhanORCID,Ozceyhan VeyselORCID

Abstract

Due to the growing interest in hybrid nanofluids, researchers have been primarily focused to obtain the thermophysical properties of hybrid nanofluids. Several parameters such as temperature, volume or weight fractions, nanoparticle types and shapes affected the thermophysical properties of nanofluids. Accordingly, the optimization in thermal conductivity and viscosity of nanofluids obtained by mixing binary nanocomposite particles GnP-Fe3O4 in an ethylene glycol-water base fluid with a mixing ratio of 20-80 % was investigated in this study. The Taguchi approach is used for single-objective optimization and the significance values of the synthesis parameters were determined using the ANOVA technique. Five different factors, including mechanical strring time, ultrasonic mixing time and power, surfactant mixing ratio, and nanofluid weight ratio, were optimized at three different levels during the synthesis of hybrid nanofluids. The experimental L27(35) orthogonal array trial was built in order to carry out the optimization. According to the results, mechanical striring time was found to have the least impact on both thermophysical parameters, whereas ultrasonic mixing power, nanofluid weight ratio, and ultrasonic mixing time were also ranked from low to high impact. The usage of surfactant was shown to be the parameter that had the greatest impact, with rates of 63.57% and 65.31%, on thermal conductivity and viscosity, respectively.

Publisher

Erciyes Energy Association

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3