UWB Microstrip Patch Antenna Design for Energy Harvesting Applications

Author:

Kanboz Beyza,Palandoken Merih

Abstract

RF energy harvesting systems, which are the receiver part of Wireless Power Transfer (WPT), have gained significant development in recent years. For maximum energy acquisition over a wide frequency range, such as to provide power to small handheld devices like cell phones, tablets, smart watches, and other smart devices, wideband and compact antennas are desired. RF systems are expected to cover different frequency bands, such as 2.4 GHz, 5.1 GHz, 5.8 GHz (Bluetooth/Wi-Fi), 2.3 GHz, 2.5 GHz, 3.5 GHz, 5 GHz (WiMAX), for energy harvesting. For such an RF harvesting system, the antenna is desired to have a wide bandwidth, good gain, and an omnidirectional radiation pattern. Energy harvesting devices refer to designs that integrate production and storage. For instance, radio frequency energy sources contain a large amount of electromagnetic energy in the environment, and with RF energy harvesting systems, a portion of this electromagnetic energy can be collected and converted into usable DC voltage. Microstrip patch antennas are very good alternatives for energy harvesting applications because they are cost-effective, compact in size and weight, flat in structure, and highly repeatable. This paper presents a microstrip patch antenna with a bandwidth of 3.9 GHz in the 3.4 to 7.3 GHz range for UWB applications. The antenna design has a gain value of 3.28dBi at the numerically calculated resonance frequency of 4.9 GHz and generally covers frequencies used for electronic device communication such as Wi-Fi 5 GHz and WiMAX. The proposed antenna design has gain values that are allowed to be used for RF energy harvesting applications.

Publisher

All Sciences Proceedings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3