Short-Term Electricity Price Forecasting Using EEMD and GRU-NN

Author:

Chughatta Khalid Rashid,Haroon Shaikh Saaqib

Abstract

A vital necessity for the reliable operation of the power system as well as for the financial well-being of the consumers is an accurate forecast of the price of electricity. The price of electricity is highly volatile, nonlinear, and subject to seasonal fluctuations. The price series is also affected by electrical market uncertainty and demand, which is strongly reliant on weather and electricity usage time. This study presents a short-term electricity price forecasting method that follows the similar days approach comprising Ensemble Empirical Mode Decomposition technique. The suggested method utilizes a feature selection methodology that combines the Random Forest Regressor and the Gradient Boosting Regressor to determine which features are most important for the machine learning model. To forecast the electricity price, a Gated Recurrent Unit Neural Network (GRU-NN) is employed as the machine learning model. The GRU-NN has the capability of accurately capturing complicated temporal relationships in electricity price time series, which enables it to make correct predictions. To evaluate the validity of the proposed method, data from the PJM electricity market have been used. The simulation results demonstrate that the suggested method is superior to the existing technique, with significantly improved values achieved for both the mean absolute percentage error (MAPE) and the root mean square error (RMSE). 

Publisher

All Sciences Proceedings

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3