Online Failure Detection using Deep Learning in FPGA PCB Interface

Author:

Ahmad Afaq,Karim Mohamed Abdul,Maashri Ahmed Al,Awadalla Medhat,Busaidi Sayyid Samir Al,Khuzaimi Maram Ahmed Al

Abstract

This research paper is aimed to present a real-time failure detection technique while working with Field Programmable Gate Arrays (FPGA) and interfaced Printed Circuit Boards (PCBs). In this research, we explored the feasibility of currently available innovative Deep Learning (DL) algorithms to detect the defects in variety of PCBs. In our proposed technique, we trained the YOLOv5 (You Only Look Once) algorithm with a few hundreds of defective PCBs’ images, which were obtained from Kaggle, an online community of data scientists and machine learning practitioners. The advantage of using YOLOv5 is that the detection is carried out in real-time. In the next phase, after training, the algorithm undergoes validation and testing, where we tested with different images. The obtained results are promising, as the Deep Learning process successfully detects the defects on the PCBs.

Publisher

All Sciences Proceedings

Reference24 articles.

1. (2023) Intel® FPGAs and Programmable Devices. [Online]. Available:

2. https://www.intel.com/content/www/us/en/products/programmable.html

3. (2023) Intel® Agilex™ FPGA. [Online]. Available:

4. https://www.intel.com/content/www/us/en/products/details/fpga/agilex/f-series.html

5. (2023) Intel® Agilex™ F-Series 027 FPGA. [Online]. Available: https://ark.intel.com/content/www/us/en/ark/products/208599/intel-agilex-fseries-027fpga-r25a.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3