Self-adaptive deep reinforcement learning for THz beamforming with silicon metasurfaces in 6G communications

Author:

Tan Yi Ji12ORCID,Zhu Changyan1ORCID,Tan Thomas Caiwei1ORCID,Kumar Abhishek1ORCID,Wong Liang Jie3ORCID,Chong Yidong1,Singh Ranjan1ORCID

Affiliation:

1. School of Physical and Mathematical Sciences, Nanyang Technological University

2. Agency for Science, Technology and Research

3. Nanyang Technological University

Abstract

Exponential growth in data rate demands has driven efforts to develop novel beamforming techniques for realizing massive multiple-input and multiple-output (MIMO) systems in sixth-generation (6G) terabits per second wireless communications. Existing beamforming techniques rely on conventional optimization algorithms that are too computationally expensive for real-time applications and require complex digital processing yet to be achieved for phased array antennas at terahertz frequencies. Here, we develop an intelligent and self-adaptive beamforming scheme enabled by deep reinforcement learning, which can predict the spatial phase profiles required to produce arbitrary desired radiation patterns in real-time. Our deep learning model adaptively trains an artificial neural network in real-time by comparing the input and predicted intensity patterns via automatic differentiation of the phase-to-intensity function. As a proof of concept, we experimentally demonstrate two-dimensional beamforming by spatially modulating broadband terahertz waves using silicon metasurfaces designed with the aid of the deep learning model. Our work offers an efficient and robust deep learning model for real-time self-adaptive beamforming to enable multi-user massive MIMO systems for 6G terahertz wireless communications, as well as intelligent metasurfaces for other terahertz applications in imaging and sensing.

Funder

National Research Foundation Singapore

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3