Affiliation:
1. Currently at NYU Shanghai
Abstract
The quantum digital signature protocol offers a replacement for most aspects of public-key digital signatures ubiquitous in today’s digital world. A major advantage of a quantum-digital-signatures protocol is that it can have information-theoretic security, whereas public-key cryptography cannot. Here we demonstrate and characterize hardware to implement entanglement-based quantum digital signatures over our campus network. Over 25 hours, we collect measurements on our campus network, where we measure sufficiently low quantum bit error rates (<5% in most cases) which in principle enable quantum digital signatures at over 50 km as shown through rigorous simulation accompanied by a noise model developed specifically for our implementation. These results show quantum digital signatures can be successfully employed over deployed fiber. Moreover, our reported method provides great flexibility in the number of users, but with reduced entanglement rate per user. Finally, while the current implementation of our entanglement-based approach has a low signature rate, feasible upgrades would significantly increase the signature rate.
Funder
U.S. Department of Energy
Office of Cybersecurity, Energy Security, and Emergency Response
Advanced Scientific Computing Research
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献