Single-pulse three-dimensional parallel recording in glass using a feedback system

Author:

Zhang JieORCID,Zhang Honghao12,Qiu Jianrong3

Affiliation:

1. Laboratory of Laser and Medical Innovation Application (LLMIA)

2. Shanghai Jiaotong University

3. Chinese Academy of Sciences

Abstract

High-quality three-dimensional computer-generated holograms (3D-CGHs) are crucial for programmable 3D femtosecond laser parallel recording (3D-FLPR). In this study, we introduced an innovative feedback approach for the rapid optimization of 3D-CGHs by incorporating the superposition of the calculated lens phases (CLPs) onto the 3D-CGHs within a feedback system. This feedback system, governed by coordinated control of a spatial light modulator (SLM) and a camera, served to avoid the poor quality of the ordinary CGH system. As a result, we successfully demonstrated coaxial 3D-FLPR in Ag-doped phosphate glass solely using a single fs laser pulse. Additionally, we regulated the energy distribution of the generated 3D multi-focus (3D-MF) to compensate the laser energy losses inside the glass. The presented single-pulse 3D parallel recording indicated the significant advancement facilitated by our method, particularly in enhancing the writing efficiency of optical storage.

Funder

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Postdoctoral Fellowship Program of CPSF

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3