Abstract
Biophotons in the nervous system are a potential carrier of neural signals. Previous experiments and studies indicated that biophotons are closely related to the neuronal activity and can propagate along myelinated axons. We establish a multilayer electromagnetic simulation model and demonstrate that the myelinated axon waveguide has low attenuation and low dispersion and operates in a narrow bandwidth on the order of 10 nm. We also find that the operating wavelength of the waveguide is almost linearly related to the axon diameter and the number of myelin layers. Each additional layer of the myelin sheath causes the operating wavelength of the myelinated axon waveguide to shift 52.3 nm to the long-wave direction, while an increase in the axon diameter of 1.0 µm causes the operating wavelength to shift 94.5 nm to the short-wave direction. These findings well explain the tendency of the spectral redshift among different species and the spectral blueshift during the aging process of mice. Via the analysis method in this paper, we can predict the wavelength of the propagating biophotons based on the neural structure.
Funder
National Natural Science Foundation of China
National Science and Technology Planning Project
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献