Abstract
Today, optical transport and data center networks extensively utilize photonic integrated systems due to their large bandwidth and a high degree of reconfigurability. In addition to these properties, photonic integrated-based systems can deliver an overall low fabrication cost, a small footprint, and low power consumption. In this perspective, we present a modular photonic integrated multi-band wavelength selective switch (WSS) capable of managing a wide spectrum, covering the three S+C+L bands, and potentially scalable to larger numbers of output fibers and routed channels. We propose a complete description of the device starting from the physical level, commenting on the device’s internal structure and design-related issues. Then, we move to the transmission level, providing a complete abstraction of the proposed WSS in the context of software-defined optical networks by providing a deterministic model to evaluate the routing controls, thermal spectral tunability, and the quality of transmission degradation. Finally, a transmission scenario operating on 400ZR standards and a network case study are also demonstrated to evaluate the performance of the proposed WSS in a single or multistage cascade setup.
Funder
Politecnico di Torino
H2020 Marie Skłodowska-Curie Actions
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献