Optical pulse interharmonic extraction and repetition rate division based on a microwave photonic phase detector

Author:

Shao Kunlin,Li Ping,Zhang Yamei,Li Shaobo1,Liang Xiaodong1,Liu Anni1,Pan ShilongORCID

Affiliation:

1. The 54th Research Institute of China Electronics Technology Group Corporation

Abstract

Microwave photonic phase detectors (MPPDs) can extract ultrastable microwaves from a mode-locked laser (MLL), but their frequencies are often limited by the pulse repetition rate. Few works studied methods to break the frequency limitation. Here, a setup based on an MPPD and an optical switch is proposed to synchronize an RF signal from a voltage-controlled oscillator (VCO) to an interharmonic of an MLL and to realize the pulse repetition rate division. The optical switch is employed to realize pulse repetition rate division, and the MPPD is followed to detect the phase difference between the frequency-divided optical pulse and the microwave signal from the VCO, which is then fed back to the VCO via a proportional–integral (PI) controller. Both the optical switch and the MPPD are driven by the signal from the VCO. When the system reaches its steady state, the synchronization and repetition rate division are achieved simultaneously. An experiment is conducted to verify the feasibility. The 80½th, 80⅓rd, and 80⅔rd interharmonics are extracted, and pulse repetition rate division factors of two and three are realized. The phase noises at offset frequency of 10 kHz are improved by more than 20 dB.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3