Material classification based on a SWIR discrete spectroscopy approach

Author:

Manakkakudy Anju1,De Iacovo Andrea1,Maiorana Emanuele1ORCID,Mitri Federica1,Colace Lorenzo1ORCID

Affiliation:

1. Roma Tre University

Abstract

A crucial yet difficult task for waste management is the identification of raw materials like plastic, glass, aluminum, and paper. Most previous studies use the diffused reflection spectroscopy for classification purposes. Despite the benefits in terms of speed and simplicity offered by modern compact spectrometers, their cost and the need for an external, wide-spectrum source of illumination create complications. To address this issue, the present paper proposes a discrete spectroscopy method that utilizes short-wave infrared (SWIR) reflectance to identify waste materials, exploiting a small set of selected wavelengths. This approach reduces the complexity of the classification data analysis and offers a more practical alternative to the conventional method. The proposed system comprises a single germanium photodetector and 10 different light emitting diodes (LEDs). The LED wavelengths are selected to maximize the system sensitivity towards a set of seven different waste materials. Using a classification strategy relying on support vector machines, the proposed methodology reaches a classification accuracy up to 98%.

Funder

Ministero dell’Università e della Ricerca

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3