Low-power laser image enhancement via deep feature recovery for HDR 3D measurement

Author:

Niu Xingman,Li FuqianORCID,Zuo Chenglin1,Zhang QicanORCID,Wang YajunORCID

Affiliation:

1. Low Speed Aerodynamics Institute

Abstract

Laser 3D measurement has gained widespread applications in industrial metrology . Still, it is usually limited by surfaces with high dynamic range (HDR) or the colorful surface texture of measured surfaces, such as metal and black industrial parts. Currently, conventional methods generally work with relatively strong-power laser intensities, which could potentially damage the sample or induce eye-safety concerns. For deep-learning-based methods, due to the different reflectivity of the measured surfaces, the HDR problem may require cumbersome adjustment of laser intensity in order to acquire enough training data. Even so, the problem of inaccurate ground truth may occur. To address these issues, this paper proposes the deep feature recovery (DFR) strategy to enhance low-light laser stripe images for achieving HDR 3D reconstruction with low cost, high robustness, and eye safety. To the best of our knowledge, this is the first attempt to tackle the challenge of high measurement costs associated with measuring HDR surfaces in laser 3D measurement. In learning the features of low-power laser images, the proposed strategy has a superior generalization ability and is insensitive to different low laser powers and variant surface reflectivity. To verify this point, we specially design the experiments by training the network merely using the diffusely reflective masks (DRM951) and testing the performance using diffusely reflective masks, metal surfaces, black industrial parts (contained in the constructed datasets DRO690, MO191, and BO107) and their hybrid scenes. Experimental results demonstrate that the proposed DFR strategy has good performances on robustness by testing different measurement scenes. For variously reflective surfaces, such as diffusely reflective surfaces, metal surfaces, and black parts surfaces, the reconstructed 3D shapes all have a similar quality to the reference method.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3