Affiliation:
1. Chinese Academy of Sciences
2. University of Chinese Academy of Sciences
3. Huazhong University of Science and Technology
Abstract
Skin-elasticity measurements can assist in the clinical diagnosis of skin diseases, which has important clinical significance. Accurately determining the depth-resolved elasticity of superficial biological tissue is an important research direction. This paper presents an optical coherence elastography technique that combines surface acoustic waves and shear waves to obtain the elasticity of multilayer tissue. First, the phase velocity of the high-frequency surface acoustic wave is calculated at the surface of the sample to obtain the Young's modulus of the top layer. Then, the shear wave velocities in the other layers are calculated to obtain their respective Young's moduli. In the bilayer phantom experiment, the maximum error in the elastic estimation of each layer was 2.2%. The results show that the proposed method can accurately evaluate the depth-resolved elasticity of layered tissue-mimicking phantoms, which can potentially expand the clinical applications of elastic wave elastography.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献