Liquid crystal based polarized low coherence interferometer for optical demodulation in sensors

Author:

Chakraborty SusantaORCID,Panchal RahulORCID,Sinha Aloka

Abstract

The resolution of the measurement detection and sensitivity of a polarized low coherence interferometer (PLCI) can be pre-engineered by optimizing the key parameters of the birefringent wedge, which is rarely reported. In this work, we introduce a liquid crystal (LC) wedge in the PLCI and use it to demodulate Fabry–Perot (FP) cavity length. The birefringence property of the nematic LC is used to convert the optical path difference (OPD) of the sensor into a spatial distribution. This results in the production of localized interference fringe patterns. The formation of PLCI fringes and the related shift of the interferogram with a variation in the displacement of the FP displacement sensor is explained with reference to the OPD matching between an LC wedge and the FP cavity. The displacement value is demodulated from the obtained fringe pattern by tracking the centroid position of the fringe envelope and also considering the birefringence dispersion. An additional simulation study shows that the spatial position of the interferogram signal coupled with the dispersion coefficient is almost identical to the experimental data. The demodulated results from both the simulation and experimental investigations are found to be consistent with each other and closely agree with the actual cavity length. Further, the possibility to enhance the sensing resolution is examined by modulating the interferogram fringes using an electric field. Compared to birefringent crystals, the LC wedge presented here is found to be advantageous for high precision and tunability of the measurement range, which is useful for robust fiber optic sensing applications.

Funder

Government of India, Ministry of Defence, Defence Research and Development Organization, New Delhi

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3