Integrated waveguide coupled ultralow-loss multimode waveguides based on silicon nitride resonators

Author:

Cui Shuai1,Yu Yuan1ORCID,Cao Kaixiang1,Pan Zhao1,Gao Xiaoyan1,Zhang Xinliang1ORCID

Affiliation:

1. Optics Valley Laboratory

Abstract

On-chip micro-ring resonators (MRRs) with low loss and large free spectral ranges (FSRs) are important for photonic devices. So far, ultra-low-loss silicon-nitride (Si3N4) waveguides are primarily fabricated in laboratories, as they often demand special processes to reduce transmission losses. While, Si3N4 waveguides fabricated by the standard multi-project wafer (MPW)-based processes often suffer from significant sidewall scattering, resulting in high scattering losses. Here, we present an innovative approach to photonics by introducing a compact and multi-mode structure. This approach significantly reduces the contact between the optical field and the rough sidewalls in the high-confinement Si3N4 waveguide. By incorporating modified Euler bends, and a weakly tapered gap directional coupler, adiabatic transmission with simultaneous ultra-low loss and compact size is achieved even in 7-µm wide waveguide. Results show that the intrinsic quality factor Qi of MRR is (6.8 ± 0.4) × 106 at the wavelength of 1550 nm, which is approximately four times higher than the previously reported by the same fabrication process. An ultra-low loss of 0.051 ± 0.003 dB/cm is achieved based on the standard LIGENTEC-AN800 technology. This accomplishment addresses a critical challenge in high-confinement waveguides. Our work provides new insights into the low propagation loss in Si3N4 waveguides and provides a broader prospect for integrated photonics in the ultra-high-Q regime.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Program for HUST Academic Frontier Youth Team

Independent Innovation Foundation of HUST

Project of Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of Education

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3