SNR enhancement with a non-local means image-denoising method for a Φ-OTDR system

Author:

Li Junchan,Wang Yu,Xiao Lin,Liu Xin1,Jin Baoquan2

Affiliation:

1. Taiyuan University of Technology

2. State Key Laboratory of Coal and CBM Co-Mining

Abstract

Orthogonal pulse pairs generated by the polarization beam splitter (PBS) and the polarization maintaining-optical switch (PM-PSW) can effectively suppress the polarization fading in phase-sensitive optical time-domain reflectometry (Φ-OTDR) systems, but the PM-PSW also brings a lot of noise when switching the optical path periodically. Therefore, a non-local means (NLM) image-processing method is proposed to enhance the signal-to-noise ratio (SNR) of a Φ-OTDR system. Compared with the existing traditional noise reduction methods based on the one-dimensional signal, the method makes full use of redundant texture and self-similarity of multidimensional data. The NLM algorithm can obtain the estimated denoising result value of current pixels by the weighted average of pixels with similar neighborhood structures in the Rayleigh temporal-spatial image. To validate the effectiveness of the proposed approach, we have carried out experiments on the actual signals obtained from the Φ-OTDR system. In the experiment, a sinusoidal waveform of 100 Hz is applied at 20.04 km of the optical fiber as a simulated vibration signal. The switching frequency of PM-PSW is set to 30 Hz. The experimental result shows that the SNR of vibration positioning curve is 17.72 dB before denoising. After using the NLM method based on image-processing technology, the SNR reaches 23.39 dB. Experimental results demonstrate that this method is feasible and effective in improving SNR. This will help to realize accurate vibration location and recovery in practical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Key Research and Development (R&D) Projects of Shanxi Province

Patent Transformation Special Plan Project of Shanxi Province

Special Fund for Science and Technology Innovation Teams of Shanxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3