Affiliation:
1. National Institute of Standards and Technology and the University of Maryland
2. University of Campinas (UNICAMP)
3. American University
4. Williams College
5. National Institute of Standards and Technology
Abstract
We present a study of homodyne measurements of two-mode, vacuum-seeded, quadrature-squeezed light generated by four-wave mixing in warm rubidium vapor. Our results reveal that the vacuum squeezing can extend down to measurement frequencies of less than 1 Hz, and the squeezing bandwidth, similar to the seeded intensity-difference squeezing measured in this system, reaches up to approximately 20 MHz for typical pump parameters. By dividing the squeezing bandwidth into smaller frequency bins, we show that different sideband frequencies represent independent sources of two-mode squeezing. These properties are useful for quantum sensing and quantum information processing applications. We also investigate the impact of group velocity delays on the correlations in the system, which allows us to optimize the useful spectrum.
Funder
Air Force Office of Scientific Research
Fundação de Amparo à Pesquisa do Estado de São Paulo
National Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献