Affiliation:
1. University of Ljubljana
2. Jožef Stefan Institute
Abstract
Vector and vortex laser beams are desired in many applications and are usually created by manipulating the laser output or by inserting optical components in the laser cavity. Distinctly, inserting liquid crystals into the laser cavity allows for extensive control over the emitted light due to their high susceptibility to external fields and birefringent nature. In this work we demonstrate diverse optical modes for lasing as enabled and stablised by topological birefringent soft matter structures using numerical modelling. We show diverse structuring of light—with different 3D intensity and polarization profiles—as realised by topological soft matter structures in radial nematic droplet, in 2D nematic cavities of different geometry and including topological defects with different charges and winding numbers, in arbitrary varying birefringence fields with topological defects and in pixelated birefringent profiles. We use custom written FDFD code to calculate emergent electromagnetic eigenmodes. Control over lasing is of a particular interest aiming towards the creation of general intensity, polarization and topologically shaped laser beams.
Funder
European Research Council
Javna Agencija za Raziskovalno Dejavnost RS
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献