Affiliation:
1. Instituto de Telecomunicações and Universidade de Aveiro
2. Bosch Car Multimedia Braga
Abstract
Automotive light detection and ranging (LiDAR) requires accurate and computationally efficient range estimation methods. At present, such efficiency is achieved at the cost of curtailing the dynamic range of a LiDAR receiver. In this Letter, we propose using decision tree ensemble machine learning models to overcome such a trade-off. Simple and yet powerful models are developed and proven capable of performing accurate measurements across a 45-dB dynamic range.
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献