Kilohertz-linewidth and low-threshold single-frequency all-fiber laser utilizing self-developed Nd3+-doped fluoro-sulfo-phosphate fiber

Author:

Li Zhongxian,Zhu Jinzhong,Ji YaoORCID,Li Jialong,Yang Changsheng,Zhao Qilai,Wang WeichaoORCID,Zhang Qinyuan

Abstract

Compared to Nd: YAG lasers, Nd3+-doped fiber lasers offer superior beam quality, compactness, and heat dissipation, especially in generating single-frequency lasers, which holds great promise for applications in optical atomic clocks, quantum computing, and high-precision bio-photonic imaging. In this study, theoretical simulations of the local environment and experimental analyses on the luminescent characteristics of what we believe to be a novel Nd3+-doped fluoro-sulfo-phosphate (FSP) laser glass were performed to mitigate the concentration and hydroxyl quenching effects. Based on that, a highly Nd3+-doped (4 mol%) FSP fiber with a large emission cross-section (3.24 × 10−20 cm2), wide bandwidth (33.7 nm), long lifetime (354 µs), and high gain coefficient (4.24 dB/cm) was designed. Utilizing this fiber, a 1065 nm SFFL with a low pump threshold of 18 mW, a narrow linewidth of 6.5 kHz, and a 0.9 µm compact all-fiber laser were demonstrated, highlighting the potential of Nd3+-doped FSP fiber in high-performance fiber lasers.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3