Affiliation:
1. National University of Defense Technology
Abstract
In this study, we demonstrate the self-healing of self-rotating beams with asymmetric intensity profiles. The proposed self-rotating beam exhibits an asymmetric intensity profile and self-healing properties in free-space propagation. In addition, the rotation direction and beam intensity profile of the self-rotating beam can be adjusted using the parameters a and b in the phase function. The effects of the position and size of the obstruction on the self-healing property of a self-rotating beam were studied both experimentally and numerically. The simulation and experimental results demonstrate that a self-rotating beam can overcome a block of obstacles and regenerate itself after a characteristic distance. Transverse energy flows were used to explain the self-healing properties. Moreover, the beam rotates during propagation, which can be used to capture and manipulate microscopic particles in a three-dimensional space. It is expected that these rotating beams with self-healing properties will be useful in penetrating obstacles for optical trapping, transportation, and optical therapy.
Funder
State Key Laboratory of High Performance Complex Manufacturing
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献