Affiliation:
1. Optics Valley Laboratory
Abstract
Overlay serves as the pivotal performance indicator for lithography tools, and its prompt and precise measurement significantly underpins the process yield control. At present, diffraction-based overlay metrology employing optical wavelengths encounters constraints in terms of measurement sensitivity. When transitioning to x-ray wavelengths, the critical-dimension small-angle x-ray scattering (CDSAXS) method for nanostructure characterization necessitates reciprocal space mapping (RSM) and inverse problem solving, resulting in substantial throughput constraints. In this work, we propose an x-ray-based overlay metrology using reciprocal space slicing analysis (RSS), yielding high-precision overlay measurement at one single angle of incidence (AOI). Moreover, we examine the robustness of the proposed method against errors stemming from overlay target grating fabrication and measurement processes, substantiating its efficacy as a novel x-ray-based overlay metrology and unveiling the potential application of x-ray-based techniques within the realm of integrated circuit metrology.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献