Design of photonic crystal fiber to excite surface plasmon resonance for highly sensitive magnetic field sensing

Author:

Wang Dongying123,Yu Yang13ORCID,Lu Zhechun13,Yang Junbo1,Yi Zao2ORCID,Bian Qiang4ORCID,Zhang Jianfa1ORCID,Qin Shangpeng5ORCID,Weng Junjie5,Yao Siyu5,Lu Yang1,Hu Xiaoyang1,Meng Zhou1

Affiliation:

1. National University of Defense Technology

2. Southwest University of Science and Technology

3. Chinese Academy of Sciences

4. Technical University of Munich

5. Guangxi University

Abstract

To improve the sensing performance of optical fiber magnetic field sensor based on magneto-refractive effect, a D-shaped photonic crystal fiber-surface plasmon resonance (PCF-SPR) sensor based on magneto-refractive effect is proposed and its magnetic field sensing characteristics are investigated. The designed D-shaped PCF has a core-analyte-gold structure. Within the D-shaped PCF, the side polishing surface is coated with the gold film and the special hole is sandwiched between the core and the gold film. To realize the high magnetic field sensitivity for the fiber SPR magnetic field sensor, the special hole is filled with magnetic fluid (MF). In this paper, we analyze the mode transmission characteristics and magnetic field sensing characteristics of this fiber sensor by finite element method. We also obtain a general rule for the optimization of PCF-SPR sensors by analyzing the dispersion curves, the energy of the surface plasmon polariton mode and the core mode on the sensing performance of the designed fiber sensor. The maximum refractive index sensitivity and magnetic field sensitivity of the optimized fiber are 59714.3 nm/RIU and 21750 pm/mT (50-130 Oe), respectively. Compared with optical fiber magnetic field sensors based on magneto-refractive effect reported previously, the magnetic field sensitivity in this paper is nearly two orders of magnitude higher and it can initially achieve nT magnitude magnetic field resolution and testing capability. The proposed fiber sensor has the advantages of simple structure, easy production, high sensitivity, and strong environmental adaptability. It not only improves the sensing performance of optical fiber magnetic field sensors, but also provides an ideal alternative platform for biosensors like microfluidics because of its high refractive index sensitivity and the special structure.

Funder

National Natural Science Foundation of China

Project of State Key Laboratory of Transducer Technology of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3