Nonvolatile multi-level adjustable optical switch based on the phase change material

Author:

Quan Zhiqiang,Wan Yuanjian,Ma Xiaoxiao1,Wang Jian2ORCID

Affiliation:

1. Huazhong University of Science and Technology

2. Optics Valley Laboratory

Abstract

For the advantages of the faster computation speed and lower energy consumption, all-optical computation has attracted great attention compared with the traditional electric computation method. Optical switches are the critical elementary units of optical computation devices. However, the traditional optical switches have two shortcomings, expending the outside energy to keep the switch state and the weak multi-level adjustable ability, which greatly restrict the realization of the large-scale photonic integrated circuits and optical spiking neural networks. In this paper, we use a subwavelength grating slot-ridge (SWGSR) waveguides on the silicon platform to design a nonvolatile multi-level adjustable optical switch based on the phase change material Ge2Sb2Te5 (GST). Changing the phase state of GST can modulate the transmission of the optical switch, and the change of the optical transmittance of the optical switch is about 70%, which is much higher than that of previous optical switches. As no static power is required to maintain the phase state, it can find promising applications in optical switch matrices and reconfigurable optical spiking neural networks.

Funder

Fundamental Research Funds for the Central Universities

the Science and Technology Innovation Commission of Shenzhen

the Key R&D Program of Guangdong Province

the Key R&D Program of Hubei Province of China

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3