Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China

Author:

Lyu Lili12,Song Kaishan13,Wen Zhidan1,Liu Ge1,Shang Yingxin1,Li Sijia1,Tao Hui12,Wang Xiang12,Hou Junbin1

Affiliation:

1. Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Liaocheng University

Abstract

The Trophic state index (TSI) is a vital parameter for aquatic ecosystem assessment. Estimating TSI by remote sensing is still a challenge due to the multivariate complexity of the eutrophication process. A comprehensive in situ spectral-biogeochemical dataset for 7 lakes in Northeast China was collected in October 2020. The dataset covers trophic states from oligotrophic to eutrophic, with a wide range of total phosphorus (TP, 0.07–0.2 mg L−1), Secchi disk depth (SDD, 0.1–0.78 m), and chlorophyll a (Chla, 0.11–20.41 μg L−1). Here, we propose an empirical method to estimate TSI from remote sensing data. First, TP, SDD, and Chla were estimated by band ratio/band combination models. Then TSI was estimated using the Carlson model with a high R2 (0.88), a low RMSE (3.87), and a low MRE (6.83%). Synergistic effects between TP, SDD, and Chla dominated the trophic state, changed the distribution of light in the water column, affected the spectral characteristics. Furthermore, the contribution of each parameter for eutrophication were different among the studied lakes from ternary plot. High Chla concentration was the main reason for eutrophication in HMT Lake with 45.4% of contribution more than the other two parameters, However, in XXK Lake, high TP concentrations were the main reason for eutrophication with 66.8% of contribution rather than Chla and SDD. Overall, the trophic state was dominated by TP, and SDD accounted for 85.6% of contribution in all sampled lakes. Additionally, we found using one-parameter index to evaluate the lake trophic state will lead to a great deviation, even with two levels of difference. Therefore, multi-parameter TSI is strongly recommended for the lake trophic state assessment. Summarily, our findings provide a theoretical and methodological basis for future large-scale estimations of lake TSI using satellite image data, help with water quality monitoring and management.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Science and Technology Development Project in Jilin, China

the Special Research Assistant Project of Chinese Academy of Sciences granted to Dr. Yingxin Shang

Heilongjiang Provincial Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3