Characterizations for the photothermal effect of Rhodamine 6G using white-light interferometry and windowed Fourier transform

Author:

Zhang QingyueORCID,Hao Linhong,Teng Lihua,Zhao QiulingORCID,Wang Xia,Tam Wing Yim1

Affiliation:

1. Hong Kong University of Science and Technology

Abstract

Photothermal phenomenon is one of the natural responses in light-matter interactions in which the energy of the incident light is converted into heat, resulting in a temperature increase in the illuminated material. This effect has a direct influence on the refractive index of the material such that its change of spectral dependency with temperature can be exploited for different applications. However, it is also important to separate/identify the thermal effect from the optical/electronic resonance effect to expand potential applications of light-matter interactions. In this work, we demonstrate the use of a white-light interferometry approach combined with a windowed Fourier transform method and a consistency-checking peak-fitting method to obtain the refractive index of an Rh6G-ethanol dye solution with a sensitivity of about ∼10−6 (RIU) for the visible range. Moreover, we also perform both static and dynamic measurements to study the photothermal effect of the Rh6G solution under external excitation. Importantly, we separate the optical and thermal effects due to the external excitation and obtain very good agreement with the experimental results by modeling the relative refractive index of the Rh6G solution with an expression consisting of spectrally a Fano-like resonance term and a linear dependent thermal term. We find that the response due to the optical effect is about ∼0.2 × 10−3 of that due to the thermal effect in the low-light regime. Our approach to separating the optical and thermal effects could shed light on other fields for potential applications through precision measurements of the transmission phase or refractive index.

Funder

National Natural Science Foundation of China

The Hong Kong Research Grants Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3