Affiliation:
1. Shanghai University of Electric Power
2. ZJU-Hangzhou Global Scientific and Technological Innovation Center
3. Shanxi University
Abstract
A novel super-resolution imaging technique based on the minimum photon flux (MINFLUX), can achieve nanometer-scale localization precision and sub-5-nm imaging. However, aberrations can affect the localization performance and degrade the quality of reconstructed images. In this study, we analyze the effects of different low-order aberrations on the MINFLUX system through both theoretical limits and Monte Carlo methods. We report that 1) defocus and spherical aberration have little effect on 2D localization performance, whereas astigmatism and coma have significant negative effects; 2) system aberrations that can be measured in advance cause changes primarily in the magnitude and angular uniformity of localization precision, whereas sample-induced aberrations that cannot be a priori introduce large biases and reduce localization accuracy.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Key Research and Development Program of Zhejiang Province
Fundamental Research Funds for the Central Universities
Zhejiang Lab
Zhejiang Provincial Ten Thousand Plan for Young Top Talents
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献