Abstract
THz photoconductive emitters based on III–V materials have demonstrated excellent THz radiation properties, enabling many unique applications. However, the incompatibility with the complementary-metal-oxide-semiconductor (CMOS) foundry fabrication process and the challenging growth condition hampers THz photoconductive emitters from large-scale production. To address this limitation, we proposed the GeSn alloy as the photoconductive material candidate through the CMOS-compatible epitaxy instrument. The GeSn photoconductor features a 518 cm2/V-s mobility and a 7187 cm–1 absorption coefficient at the wavelength of 1560 nm, resulting in sufficiently ultrafast photocurrent generation for THz radiation. As a result, the GeSn THz emitter provides over a bandwidth of 2 THz and a 40 dB signal-to-noise ratio, which shows its potential in realizing mass-producible, cost-effective THz integrated systems with CMOS technology.
Funder
Ministry of Science and Technology, Taiwan
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献