Ultra-broadband and completely modulated absorption enhancement of monolayer graphene in a near-infrared region

Author:

Yan ZhendongORCID,Kong Lingchen1,Tang Chaojun1,Deng Juan1,Gu Ping2,Chen Jing2ORCID,Wang Xiangxian3,Yi Zao4ORCID,Zhu Mingwei5

Affiliation:

1. Zhejiang University of Technology

2. Nanjing University of Posts and Telecommunications

3. Lanzhou University of Technology

4. Southwest University of Science and Technology

5. Nanjing University

Abstract

Achieving ultra-broadband and completely modulated absorption enhancement of monolayer graphene in near-infrared region is practically important to design graphene-based optoelectronic devices, however, which remains a challenge. In this work, by spectrally designing multiple magnetic plasmon resonance modes in metamaterials to be adjacent to each other, near-infrared light absorption in monolayer graphene is greatly improved to have an averaged absorption efficiency exceeding 50% in a very broad absorption bandwidth of about 800 nm. Moreover, by exerting an external bias voltage on graphene to change Fermi energy of graphene, the ultra-broadband absorption enhancement of monolayer graphene exhibits an excellent tunability, which has a nearly 100% modulation depth and an electrical switching property. This work is promising for applications in near-infrared photodetectors, amplitude modulators of electromagnetic waves, etc.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3