Abstract
A high sensitivity optical fiber temperature and gas pressure sensor with integrated micro-cavity is proposed. First, a single-mode optical fiber (SMF) is spliced with a section of capillary, and then the sensitive material polydimethylsiloxane (PDMS) is filled into the capillary to form a Fabry–Perot interferometer (FPI). Finally, a femtosecond laser is used to ablate the fiber core of the SMF to form the third reflecting surface, constituting two cascaded FPIs. When two FPIs have a similar free spectral range, a Vernier effect is produced. The temperature and gas pressure sensitivity of the sensor reached 14.41 nm/°C and 113.82 nm/MPa, respectively, after using the sensitive material and Vernier effect double sensitization technology. In addition, a fiber Bragg grating is cascaded with the sensor, which can realize the simultaneous measurement of temperature and gas pressure and eliminate cross-sensitivity.
Funder
the Middle-aged and Youth Science and Technology Innovation Team of Hubei Province University
Subject
Atomic and Molecular Physics, and Optics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献