Distributed temperature sensors operating at 840  nm for short-range sensing applications

Author:

Silva Luís C. B.1ORCID,Segatto Marcelo E. V.1ORCID

Affiliation:

1. Federal University of Espírito Santo

Abstract

Raman-based distributed temperature sensor (RDTS) devices have grown dramatically over the past two decades, partially driving the optical sensor industry. Over nearly four decades, most academic investigations about RDTS have focused on developing distributed sensor devices operating at the wavelength of 1550 nm, given the low loss of standard single-mode fibers in this spectral region. Certainly, the wavelength of 1550 nm is ideal for long-range sensing applications. However, at this wavelength, the signal-to-noise ratio (SNR) of RDTS systems is degraded, given the low intensity of the measured signals. Looking for simple solutions to improve the SNR of this sensing technology, we discuss in this paper an RDTS operating at the spectral region of 840 nm as an alternative for short-range distributed temperature sensing applications delivering an improved SNR.

Funder

Fundação de Amparo à Pesquisa e Inovação do Espírito Santo

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3