Rapid and high-precision displacement sensing based on the multiple mode dip areas in a SNAP microresonator

Author:

Dong YongchaoORCID,Li Yongkang,Wang Jiebo,Huang Shihao,Zhang Shuai,Wang Han

Abstract

Whispering gallery mode (WGM) microresonators offer significant potential for precise displacement measurement owing to their compact size, ultrahigh sensitivity, and rapid response. However, conventional WGM displacement sensors are prone to noise interference, resulting in accuracy loss, while the demodulation process for displacement often exhibits prolonged duration. To address these limitations, this study proposes a rapid and high-precision displacement sensing method based on the dip areas of multiple resonant modes in a surface nanoscale axial photonics microresonator. By employing a neural network to fit the nonlinear relationship between displacement and the areas of multiple resonant dips, we achieve displacement prediction with an accuracy better than 0.03 µm over a range of 200 µm. In comparison to alternative sensing approaches, this method exhibits resilience to temperature variations, and its sensing performance remains comparable to that in a noise-free environment as long as the signal-to-noise ratio is greater than 25 dB. Furthermore, the extraction of the dip area enables significantly enhanced speed in displacement measurement, providing an effective solution for achieving rapid and highly accurate displacement sensing.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Reference30 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3