Affiliation:
1. National Taipei University of Technology
Abstract
Reinforcement learning (RL) is applied to improve the performance of the polarization modulator (PolM)-based W-band radio-over-fiber (RoF) system in this Letter. By controlling the polarization angle of the dual-wavelength laser source in the PolM-based scheme, the RF response can be easily modified and therefore it hugely increases the available bandwidth in the RoF system. In the proposed RL scheme, the state is described as the value of the angle from the polarization controller (PC). We use changing the angle of the polarizer (P) as the actions of the RL agent to optimize the frequency response. The agent also receives a reward from the system and learns from the environment and previous experience. Moreover, the reward is the value of error vector magnitude at each state. Therefore, the proposed scheme of RL is implemented and demonstrated in a multi-channel RoF system, and the results show that an RL agent provides an effective intelligent technique to obtain the best quality of data transmission.
Funder
Ministry of Science and Technology, Taiwan
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献