Affiliation:
1. Shanghai Jiao Tong University
2. Jinan Institute of Quantum Technology
3. Shanghai University of Engineering Science
4. Shanghai Research Center for Quantum Sciences
5. Shandong Normal University
Abstract
Phase-matched nonlinear wave mixing, e.g., second-harmonic generation (SHG), is crucial for frequency conversion for integrated photonics and applications, where phase matching wavelength tunability in a wide manner is important. Here, we propose and demonstrate a novel design of angle-cut ridge waveguides for SHG on the lithium niobate-on-insulator (LNOI) platform via type-I birefringent phase matching (BPM). The unique strong birefringence of LN is used to achieve flexible temperature tuning. We experimentally demonstrate a normalized BPM conversion efficiency of 2.7%W−1cm−2 in an angle-cut LN ridge waveguide with a thermo tuning slope of 1.06 nm/K at the telecommunication C band. The approach effectively overcomes the spatial walk-off effect and avoids the need for periodic domain engineering. Furthermore, the angle-cut ridge waveguide scheme can be universally extended to other on-chip birefringent platforms where domain engineering is difficult or immature. The approach may open up an avenue for tunable nonlinear frequency conversion on integrated photonics for broad applications.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Shanghai Municipal Science and Technology Major Project
Shanghai Rising-Star Program
Shandong Quancheng Scholarship
Subject
Atomic and Molecular Physics, and Optics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献