Affiliation:
1. Massachusetts Institute of Technology
2. Harvard University
Abstract
We introduce end-to-end inverse design for multi-channel imaging, in which a nanophotonic frontend is optimized in conjunction with an image-processing backend to extract depth, spectral and polarization channels from a single monochrome image. Unlike diffractive optics, we show that subwavelength-scale “metasurface” designs can easily distinguish similar wavelength and polarization inputs. The proposed technique integrates a single-layer metasurface frontend with an efficient Tikhonov reconstruction backend, without any additional optics except a grayscale sensor. Our method yields multi-channel imaging by spontaneous demultiplexing: the metaoptics front-end separates different channels into distinct spatial domains whose locations on the sensor are optimally discovered by the inverse-design algorithm. We present large-area metasurface designs, compatible with standard lithography, for multi-spectral imaging, depth-spectral imaging, and “all-in-one” spectro-polarimetric-depth imaging with robust reconstruction performance (≲ 10% error with 1% detector noise). In contrast to neural networks, our framework is physically interpretable and does not require large training sets. It can be used to reconstruct arbitrary three-dimensional scenes with full multi-wavelength spectra and polarization textures.
Funder
MIT-IBM Watson AI Laboratory
Multidisciplinary University Research Initiative
Army Research Office
Subject
Atomic and Molecular Physics, and Optics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献