Towards an ultrafast 3D imaging scanning LiDAR system: a review

Author:

Li Zhi,Han Yaqi,Wu LicanORCID,Zang ZihanORCID,Dai Maolin1ORCID,Set Sze Yun1ORCID,Yamashita Shinji1ORCID,Li Qian2ORCID,Fu H. Y.ORCID

Affiliation:

1. The University of Tokyo

2. Peking University

Abstract

Light detection and ranging (LiDAR), as a hot imaging technology in both industry and academia, has undergone rapid innovation and evolution. The current mainstream direction is towards system miniaturization and integration. There are many metrics that can be used to evaluate the performance of a LiDAR system, such as lateral resolution, ranging accuracy, stability, size, and price. Until recently, with the continuous enrichment of LiDAR application scenarios, the pursuit of imaging speed has attracted tremendous research interest. Particularly, for autonomous vehicles running on motorways or industrial automation applications, the imaging speed of LiDAR systems is a critical bottleneck. In this review, we will focus on discussing the upper speed limit of the LiDAR system. Based on the working mechanism, the limitation of optical parts on the maximum imaging speed is analyzed. The beam scanner has the greatest impact on imaging speed. We provide the working principle of current popular beam scanners used in LiDAR systems and summarize the main constraints on the scanning speed. Especially, we highlight the spectral scanning LiDAR as a new paradigm of ultrafast LiDAR. Additionally, to further improve the imaging speed, we then review the parallel detection methods, which include multiple-detector schemes and multiplexing technologies. Furthermore, we summarize the LiDAR systems with the fastest point acquisition rate reported nowadays. In the outlook, we address the current technical challenges for ultrafast LiDAR systems from different aspects and give a brief analysis of the feasibility of different approaches.

Funder

Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation

Shenzhen Technology and Innovation Council

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3