Multipath-controlled bidirectional metasurface for multitasking polarization regulation and absorption

Author:

Wang Jiayun1ORCID,Niu Yuanyuan23,Kang Jinfeng1,Qu Zeng1,Duan Junping1,Zhang Binzhen1

Affiliation:

1. North University of China

2. Shanxi Polytechnic College

3. Shanxi University

Abstract

In the design of metasurfaces, integrating multiple tasks into a single small unit cell and achieving regulation through various paths pose a serious challenge. In this paper, a multipath-controlled bidirectional metasurface (MCBM) is designed to achieve polarization regulation, perfect absorption and total reflection as multitasking functions. The findings demonstrate that under different excitation conditions, when co-planar polarized terahertz (THz) waves are incident normally on the metasurface, the MCBM can convert co-planar polarization to cross-polarization, co-planar polarization to circular polarization wave in reflection mode, and co-planar polarization to cross-polarization in transmission, respectively. When co-planar polarized THz waves are incident from the back side of the metasurface, the tasks of MCBM change to broadband perfect absorption, total reflection, and transmission co-planar polarization to cross-polarization conversion. Remarkably, all operating frequency bands of these tasks are very approximate. Additionally, the multitasking functions can be switched by altering the excitation conditions, and their performance can be regulated through multipath controls, such as the temperature, voltage, and polarization status. Our design provides an effective strategy for multipath-controlled multitasking integrated devices in the THz band.

Funder

National Natural Science Foundation of China

Shanxi Provincial Key Research and Development Project

Fundamental Research Program of Shanxi Province

Shanxi ‘1331 Project’ Key Subject Construction, Innovation community

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3